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Introduction
• SMA is widely used in northern and central Europe for over 

25 years.
• In U.S., some studies in MD and GA showed: SMA performs 

well against rutting and roughness for periods exceeding 10 
years.
 Stone to stone contact
 High asphalt content; Polymer modified binder

• National specifications: AASHTO R46, AASHTO M325
• State’s good experience is critical for successful 

implementation of SMA.
• WA’s experience (not so good at the beginning): 
 1999: SR 524 mix design construction issue
 2000: I-90 inadequate control over mix production 3



Project Information
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• Eastern Washington: dry-freeze
• I-90: from SR 21 to Ritzville; AADT- 38,300; paved in 2001
• SMA: 12.5-mm NMAS, PG 76-28 
• HMA: 12.5-mm NMAS, PG 64-28 
• Both on WB lanes, overlay thickness 63.5 mm



Material PropertyField Performance

Research Objective
• Investigate the long-term performance of SMA 
pavement as compared to control HMA pavement
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• WSPMS
 Pavement structural 

condition (PSC): cracking
 Pavement rutting condition 

(PRC): rutting
 Pavement profile condition 

(PCC): roughness
• Field inspection

• Field cores
 Mixtures testing

• Binder extraction
• Aggregate gradation
• Binder Recovery 
 Binder testing



Material Characterization: Mixture
Mixture 
Test

IDT Dynamic 
Modulus/Creep 
Compliance

Fatigue-
IDT Fracture at 
Room Temp

Thermal Cracking-
IDT Fracture at Low 
Temp

Studded Tire 
Wear Test

Testing 
Conditions

Temp.: 
-20, -10, 0, 10, 20, 30ºC;
Frequency: 
20, 10, 5, 1, 0.1, 0.01 Hz
Duration: 100 seconds

Temp.: 20ºC
Loading rate: 50.8 
mm/min

Temp.: -10ºC
Loading rate: 2.54 
mm/min

Temp.: room
Pressure: 690 kPa
Speed: 140 rpm
Duration: 2 min

Material 
Properties

Dynamic modulus;
Creep compliance

IDT strength;
Fracture work density;
Horizontal failure strain

IDT strength;
Fracture work density Mass loss

References
/Standards Wen et al. 2002

Shen et al. 2017; 
AASHTO T322

Shen et al. 2017; 
AASHTO T322

Wen and Wu 2015
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Material Characterization: Asphalt Binder
Binder Test Performance 

Grading (PG) Rutting: MSCR
Fatigue: 
Monotonic at 
Room Temp

Thermal Cracking: 
Monotonic at Low 
Temp

Testing 
Conditions

Different temp 
depending on the 
test (DSR, BBR)

Stress: 0.1, 3.2 kPa
Temp.: 

Temp.: 20ºC
Shear rate: 0.3 s-1

Temp.: 5ºC
Shear strain rate:  
0.01 s-1

Material 
Properties

PG;
BBR stiffness; 
m-value

Jnr0.1, Jnr3.2;
R0.1, R3.2

Maximum stress;
Fracture energy; 
Failure strain

Maximum stress; 
Fracture energy; 
Failure strain

References/Stan
dards

AASHTO 
MP1/T240/T313

AASHTO T350 Shen et al. 2017
Wu 2017; Shen et al. 
2017
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Field Performance
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Dynamic Modulus
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• Overall, HMA E* 20% higher than SMA E*.
• SMA is more flexible than HMA.
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Creep Compliance
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• Overall, HMA shows lower creep compliance than SMA.
• SMA gives a better ability to relax stress, and thus better

thermal cracking resistance.



Studded Tire Wear Test Result

12

Average Mass 
Loss, g

Standard
Deviation, g P-value 

11 HMA specimens 2.7 1.46 0.73 > α=0.0512 SMA specimens 3.3 0.75

• No significant 
difference in mass loss

• Comparable wear 
resistance



IDT Test Results
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20°C

HMA

SMA

Test 
Condition Parameters HMA SMA HMA –

SMA, %Mean σ Mean σ

20°C
IDT Strength, kPa 2992.3 297.2 2581.4 74.5 15.9

Fracture Work Density, kPa 148.9 24.8 220.6 2.8 -32.5
Horizontal Failure Strain 0.0060 0.0004 0.0096 0.0014 -37.5

-10°C IDT Strength, kPa 4465.0 369.6 4397.5 188.2 1.5
Fracture Work Density, kPa 82.0 11.0 120.0 9.0 -31.6

SMA

HMA

-10°C

SMA: 
Cohesive 
failure 

HMA: 
Aggregate 
fracture

• SMA performs better than HMA for bottom-up and top-down cracking resistance, 
as well as thermal cracking resistance.



Aggregate Gradation Test Result
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Binder PG Test Results
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Original PG Measured True PG PG
HMA 64-28 73.3-24.4 70-22
SMA 76-28 81.8-29.3 76-28

Binder MSCR Test Results
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• SMA binder shows better resistance to rutting.

• SMA slows down oxidation possibly due to a thicker asphalt film.



DSR Monotonic Fracture Test Result
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Conclusions
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• SMA pavement exhibited better long-term field 
performance than HMA control pavement.

• Field SMA field cores indicated:
 Lower E* and higher creep compliance
 Better resistance to rutting
 Comparable resistance to studded tire wear
 Better resistance to bottom-up and top-down fatigue cracking
 Better thermal cracking resistance

• Field-extracted SMA binder indicated: 
 Slower oxidation rate due to a thicker film thickness
 Better rutting resistance
 Better fatigue and thermal cracking resistance



Future Study: 
Balanced Mix Concept for SMA

SMA

Too 
Soft

Too 
Brittle

19(Credit: Mr. David Lippert)



Balanced Mix Design Concept for SMA

Cracking: 
I-FIT Test

Rutting:
Hamburg

SuperpaveTM

Volumertics

Low Temperature 
Cracking

Fatigue/Block/Other 
Forms of Cracking

Permanent 
Deformation

-40°C -20°C 20°C 40°C      

20(Credit: Dr. Imad Al-Qadi)



End-of-life

Material 
Production Design

Construction

UsePreservation,
Maintenance, &
Rehabilitation

SMA Pavement with 
Sustainability 

Considerations
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Future Study
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• Include more case studies with varying traffic, 
environmental and other factors to draw relatively 
conclusive decisions.

• Further evaluation on the effects of aggregate gradation 
and binder PG on the difference performance.
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Thank You!
Any questions?
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Contact: Dr. Shenghua Wu
Email: shenghuawu@southalabama.edu

mailto:shenghuawu@southalabama.edu
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