#### Case Study: Long-term Performance of SMA Pavements in Washington State

#### Shenghua Wu, Ph.D., LEED AP

Assistant Professor, University of South Alabama

#### Kevin Littleton, PE

Washington State Department of Transportation

1<sup>st</sup> International Conference on Stone Matrix Asphalt, Atlanta GA

Nov 6, 2018





### Outline

- Introduction
- Project Information
- Research Scope
- Results of SMA and HMA Comparison
  - Field Performance
  - Field Cores Mixture Properties
  - Extracted Binder Properties
- Conclusions and Future Study

# Introduction

- SMA is widely used in northern and central Europe for over 25 years.
- In U.S., some studies in MD and GA showed: SMA performs well against rutting and roughness for periods exceeding 10 years.
  - ✓ Stone to stone contact
  - ✓ High asphalt content; Polymer modified binder
- National specifications: AASHTO R46, AASHTO M325
- State's good experience is critical for successful implementation of SMA.
- WA's experience (not so good at the beginning):
  ✓ 1999: SR 524 mix design construction issue
  - ✓ 2000: I-90 inadequate control over mix production

# **Project Information**

- Eastern Washington: dry-freeze
- I-90: from SR 21 to Ritzville; AADT- 38,300; paved in 2001
- SMA: 12.5-mm NMAS, PG 76-28
- HMA: 12.5-mm NMAS, PG 64-28
- Both on WB lanes, overlay thickness 63.5 mm





# **Research Objective**

 Investigate the long-term performance of SMA pavement as compared to control HMA pavement



#### WSPMS

- Pavement structural condition (PSC): cracking
- Pavement rutting condition (PRC): rutting
- Pavement profile condition (PCC): roughness
- Field inspection



- Field cores
  - Mixtures testing
  - Binder extraction
  - Aggregate gradation
  - Binder Recovery
    - Binder testing

#### **Material Characterization: Mixture**

| Mixture<br>Test          | IDT Dynamic<br>Modulus/Creep<br>Compliance                                                                | Fatigue-<br>IDT Fracture at<br>Room Temp                             | Thermal Cracking-<br>IDT Fracture at Low<br>Temp | Studded Tire<br>Wear Test                                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|
| Testing<br>Conditions    | Temp.:<br>-20, -10, 0, 10, 20, 30°C;<br>Frequency:<br>20, 10, 5, 1, 0.1, 0.01 Hz<br>Duration: 100 seconds | Temp.: 20ºC<br>Loading rate: 50.8<br>mm/min                          | Temp.: -10ºC<br>Loading rate: 2.54<br>mm/min     | Temp.: room<br>Pressure: 690 kPa<br>Speed: 140 rpm<br>Duration: 2 min |
| Material<br>Properties   | Dynamic modulus;<br>Creep compliance                                                                      | IDT strength;<br>Fracture work density;<br>Horizontal failure strain | IDT strength;<br>Fracture work density           | Mass loss                                                             |
| References<br>/Standards | Wen et al. 2002                                                                                           | Shen et al. 2017;<br>AASHTO T322                                     | Shen et al. 2017;<br>AASHTO T322                 | Wen and Wu 2015                                                       |





**Vertical Failure Deformation** 



#### **Material Characterization: Asphalt Binder**

| Binder Test              | Performance<br>Grading (PG)                           | Rutting: MSCR                                                                    | Fatigue:<br>Monotonic at<br>Room Temp                 | Thermal Cracking:<br>Monotonic at Low<br>Temp            |  |
|--------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--|
| Testing<br>Conditions    | Different temp<br>depending on the<br>test (DSR, BBR) | Stress: 0.1, 3.2 kPa<br>Temp.:                                                   | Temp.: 20ºC<br>Shear rate: 0.3 s <sup>-1</sup>        | Temp.: 5°C<br>Shear strain rate:<br>0.01 s <sup>-1</sup> |  |
| Material<br>Properties   | PG;<br>BBR stiffness;<br>m-value                      | Jnr <sub>0.1</sub> , Jnr <sub>3.2</sub> ;<br>R <sub>0.1</sub> , R <sub>3.2</sub> | Maximum stress;<br>Fracture energy;<br>Failure strain | Maximum stress;<br>Fracture energy;<br>Failure strain    |  |
| References/Stan<br>dards | AASHTO<br>MP1/T240/T313                               | AASHTO T350                                                                      | Shen et al. 2017                                      | Wu 2017; Shen et al.<br>2017                             |  |





### Outline

- Introduction
- Project Information
- Research Scope
- Results of SMA and HMA Comparison
  - Field Performance
  - Field Cores Mixture Properties
  - Extracted Binder Properties
- Conclusions and Future Study

#### **Field Performance**



### **Dynamic Modulus**



- Overall, HMA E\* 20% higher than SMA E\*.
- SMA is more flexible than HMA.

# **Creep Compliance**



- Overall, HMA shows lower creep compliance than SMA.
- SMA gives a better ability to relax stress, and thus better thermal cracking resistance.

#### **Studded Tire Wear Test Result**



- No significant difference in mass loss
- Comparable wear resistance

|                  | Average Mass         | Average Mass Standard |                        |  |
|------------------|----------------------|-----------------------|------------------------|--|
|                  | Loss, g Deviation, g |                       | F-value                |  |
| 11 HMA specimens | 2.7                  | 1.46                  | $0.72 \times a = 0.05$ |  |
| 12 SMA specimens | 3.3                  | 0.75                  | $0.73 > \alpha = 0.05$ |  |

# **IDT Test Results**

20°C





| Test      | Daramotors                 | H№     | 1A     | SN     | SMA    |        |
|-----------|----------------------------|--------|--------|--------|--------|--------|
| Condition | Farameters                 | Mean   | σ      | Mean   | σ      | SMA, % |
| 20°C      | IDT Strength, kPa          | 2992.3 | 297.2  | 2581.4 | 74.5   | 15.9   |
|           | Fracture Work Density, kPa | 148.9  | 24.8   | 220.6  | 2.8    | -32.5  |
|           | Horizontal Failure Strain  | 0.0060 | 0.0004 | 0.0096 | 0.0014 | -37.5  |
| -10° C    | IDT Strength, kPa          | 4465.0 | 369.6  | 4397.5 | 188.2  | 1.5    |
|           | Fracture Work Density, kPa | 82.0   | 11.0   | 120.0  | 9.0    | -31.6  |

 SMA performs better than HMA for bottom-up and top-down cracking resistance, as well as thermal cracking resistance.

### **Aggregate Gradation Test Result**





|     | In-place Measured  | Designed Asphalt |
|-----|--------------------|------------------|
|     | Asphalt Content, % | Content, %       |
| SMA | 6.8                | 6.8              |
| HMA | 5.6                | 5.44             |

#### **Binder PG Test Results**

|     | Original PG | Measured True PG | PG    |
|-----|-------------|------------------|-------|
| HMA | 64-28       | 73.3-24.4        | 70-22 |
| SMA | 76-28       | 81.8-29.3        | 76-28 |

• SMA slows down oxidation possibly due to a thicker asphalt film.

#### **Binder MSCR Test Results**



• SMA binder shows better resistance to rutting.

#### **DSR Monotonic Fracture Test Result**

| 1600<br>004<br>004<br>004<br>004<br>004<br>004<br>004 | 20°0  |      | HMA<br>SMA                                            | 4000<br>3500<br>3000<br>2500<br>1500<br>1000<br>500 | 5°(  | C    | HMA<br>SMA      |
|-------------------------------------------------------|-------|------|-------------------------------------------------------|-----------------------------------------------------|------|------|-----------------|
| 0 5 10 15 20 25 30 35 40<br>Shear Strain              |       |      | <sup>0</sup> Shear Strain <sup>10</sup> <sup>15</sup> |                                                     |      |      |                 |
| Binder                                                | SMA   | HMA  | SMA –<br>HMA, %                                       | Binder                                              | SMA  | HMA  | SMA –<br>HMA, % |
| Shear<br>Strength, kPa                                | 1446  | 1256 | 15                                                    | Shear<br>Strength, kPa                              | 2410 | 4144 | -42             |
| Fracture<br>Energy, kPa                               | 10495 | 1930 | 444                                                   | Fracture<br>Energy, kPa                             | 5275 | 5082 | 4               |
| Failure Strain                                        | 10    | 2    | 443                                                   | Failure Strain                                      | 3    | 1    | 85              |

### Outline

- Introduction
- Project Information
- Research Scope
- Results of SMA and HMA Comparison
  - Field Performance
  - Field Cores Mixture Properties
  - Extracted Binder Properties
- Conclusions and Future Study

## Conclusions

- SMA pavement exhibited better long-term field performance than HMA control pavement.
- Field SMA field cores indicated:
  - ✓ Lower E\* and higher creep compliance
  - ✓ Better resistance to rutting
  - ✓ Comparable resistance to studded tire wear
  - ✓ Better resistance to bottom-up and top-down fatigue cracking
  - ✓ Better thermal cracking resistance
- Field-extracted SMA binder indicated:
  - ✓ Slower oxidation rate due to a thicker film thickness
  - ✓ Better rutting resistance
  - ✓ Better fatigue and thermal cracking resistance

#### Future Study: Balanced Mix Concept for SMA



(Credit: Mr. David Lippert)

#### **Balanced Mix Design Concept for SMA**





# **Future Study**

- Include more case studies with varying traffic, environmental and other factors to draw relatively conclusive decisions.
- Further evaluation on the effects of aggregate gradation and binder PG on the difference performance.

# Acknowledgements

- Washington State Department of Transportation (WSDOT)
- Pacific Northwest Transportation Consortium (PacTrans)
- Washington Center for Asphalt Technology (WCAT), WSU
- Dr. Haifang Wen, Mr. Skyler Chaney, Dr. Steve Muench

#### Citation

Wu, S., H. Wen, S. Chaney, K. Littleton, and S. Muench. Evaluation of Long-Term Performance of Stone Matrix Asphalt in Washington State. *Journal of Performance of Constructed Facilities*, 2017, Vol. 31, Issue 1. DOI: <u>https://ascelibrary.org/doi/10.1061/%28ASCE%29CF.1943-5509.0000939</u>

# Thank You! Any questions?



www.shutterstock.com - 273857027

#### Contact: Dr. Shenghua Wu

Email: <a href="mailto:shenghuawu@southalabama.edu">shenghuawu@southalabama.edu</a>